调和—几何—算数—平方不等式。

调和平均数,几何平均数,算术平均数,平方平均数之间又如下关系:(二元)

\frac{2}{\frac{1}{x}+\frac{1}{y}}\leq\sqrt{xy}\leq\frac{x+y}{2}\leq\sqrt{x^2+y^2}

利用mathematica可以实现可视化:

n代表不同的伪随机种子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Clear["`*"];
Manipulate[
Row[{scene = RandomInstance[
GeometricScene[{a, b, c, d, e, f, o},
{GeometricStep[{Triangle[{a, b, c}],
CircleThrough[{a, b, c, e}, o],
o == Midpoint[{a, b}], Line[{d, e}], Line[{a, d, o, b}],
Line[{c, f, o}],
GeometricAssertion[{Line[{a, b}], Line[{c, d}]},
"Perpendicular"],
GeometricAssertion[{Line[{d, f}], Line[{c, o}]},
"Perpendicular"],
GeometricAssertion[{Line[{a, b}], Line[{o, e}]},
"Perpendicular"]
}, "平均值不等式"]}
], RandomSeeding -> n
],
{AA, BB, CC,
DD} = {EuclideanDistance [d, e], EuclideanDistance [o, e],
EuclideanDistance [d, c], EuclideanDistance [c, f]} /.
scene["Points"];
Column[{" \!\(\*SqrtBox[FractionBox[\(\*SuperscriptBox[\(x\), \(2\
\)] + \*SuperscriptBox[\(y\), \(2\)]\), \(2\)]]\)=de=" <> ToString[AA],
" \!\(\*FractionBox[\(x + y\), \(2\)]\)=oe=" <> ToString[BB],
" \!\(\*SqrtBox[\(xy\)]\)=cd=" <> ToString[CC],
" \!\(\*FractionBox[\(2 xy\), \(x + y\)]\)=cf=" <>
ToString[DD]}]}]
, {n, 1, 10, 1}, ControlPlacement -> Top]

img

本文采用CC-BY-SA-3.0协议,转载请注明出处
作者: 得意喵~