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ABSTRACT

Slender structures, such as rods, often exhibit large deformations even under moderate external forces (e.g., gravity). This charac-
teristic results in a rich variety of morphological changes, making them appealing for engineering design and applications, such as
soft robots, submarine cables, decorative knots, and more. Prior studies have demonstrated that the natural shape of a rod signif-
icantly influences its deformed geometry. Consequently, the natural shape of the rod should be considered when manufacturing
and designing rod-like structures. Here, we focus on an inverse problem: Can we determine the natural shape of a suspended
2D planar rod so that it deforms into a desired target shape under the specified loading? We begin by formulating a theoretical
framework based on the statics of planar rod equilibrium that can compute the natural shape of a planar rod given its target shape.
Furthermore, we analyze the impact of uncertainties (e.g., noise in the data) on the accuracy of the theoretical framework. The
results reveal the shortcomings of the theoretical framework in handling uncertainties in the inverse problem, a fact often over-
looked in previous works. To mitigate the influence of the uncertainties, we combine the statics of the planar rod with the adjoint
method for parameter sensitivity analysis, constructing a learning framework that can efficiently explore the natural shape of the
designed rod with enhanced robustness. This framework is validated numerically for its accuracy and robustness, offering valu-
able insights into the inverse design of soft structures for various applications, including soft robotics and animation of morphing
structures.

1 | Introduction natural shape, leading to their structural richness, which bene-
fits many engineering applications, including knots [6-8], soft

Rods, one-dimensional structures characterized by their long and robots [9, 10], and surgery threads [11, 12]. Most prior works have

thin geometry, are ubiquitous in the real world. These structures
encompass a wide range of physical, biological, and manufac-
tured phenomena, spanning from macroscopic examples such as
hairs [1], tendrils [2], and cables [3] to microscopic ones like DNA
molecules [4] and carbon nanotubes [5]. Most rod-like struc-
tures are not naturally straight but feature an intricate, curved

explored the deformations and mechanics of these processes in a
forward manner. However, designing the geometry and material
parameters of deformable structures, given their deformed con-
figurations and constraints, is sometimes more important for the
design and fabrication of rod or beam-like engineering applica-
tions. Examples include designing deformations in soft robots for

Dezhong Tong and Zhuonan Hao contributed equally to this study.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

International Journal for Numerical Methods in Engineering, 2025; 126:€70018
https://doi.org/10.1002/nme.70018

1of 14


https://doi.org/10.1002/nme.70018
https://orcid.org/0000-0002-6071-3411
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/nme.70018
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.70018&domain=pdf&date_stamp=2025-03-09

tasks such as navigation [13] or grasping [14], utilizing 4D print-
ing to fabricate electronic devices [15], and creating customized
decorations and toys [16].

The inverse design of rod-like structures stems from various theo-
ries of elasticity, developed to describe the equilibrium and defor-
mations of rods under finite displacements. In the 19th cen-
tury, Kirchhoff and Clebsch proposed elastic theory for inexten-
sible and unshearable rods [17], which was later expanded by
the Cosserat brothers to include extensible and shearable elas-
tic rods [18]. Numerous research efforts have since focused on
developing analytical and numerical approaches to solving the
Kirchhoff rod equations for diverse applications, such as study-
ing DNA molecules [19, 20] and plant growth [2, 21], as well as
robotics applications involving deformable structures like wire
management [3, 22] and sheet folding [23]. All of those works
emphasize the significant influence of natural curvature on the
deformed configurations of rods and analyze the deformation of
rod-like structures in a forward manner. Those works on the for-
ward process underpin the inverse design approaches discussed
in this article.

The inverse problem encompasses various challenges in mechan-
ics, such as identifying external stimuli acting on a body from
its deformed configuration or determining the natural shape or
material properties of a rod-like structure from its deformed equi-
librium and constraints. The focus here is on inverse design,
where the material parameters are known and the objective
is to discover the natural shape of the rod [24, 25], rather
than inverse measurements, which aims to identify material
properties like bending stiffness [26-28] and fibril orientation
angle [29]. A representative example is shown in Figure 1: Given
a desired target shape, such as an artificial orchid, the chal-
lenge lies in determining the initial, pre-deformed configura-
tion that will naturally transform into the desired shape upon
deformation. To tackle inverse design problems, various ana-
lytical and numerical approaches have been developed by dif-
ferent communities, including applied mathematics, mechanics,
and computer graphics [30]. Those approaches can be classified
into two main streams. The first stream formulates the inverse
problem as Elastica problems based on different elastic theo-
ries to generate general solutions. Examples include the inverse
design for manipulating flexural waves on thin elastic planes
using the Kirchhoff-Love equations [31], the inverse design of
morphing structures with tapered elastica [32], and the inverse
exploration of a rod’s natural configuration using the Kirchhoff
rod models [24]. The second stream involves numerical model-
ing approaches such as mass-spring systems and finite element
methods (FEM), often assisted by non-linear optimization algo-
rithms to handle inverse problems in more general, non-linear
systems. For instance, Chen et al. [16] combined the asymptotic
numerical method with FEM to tackle the inverse elastic shape
design during 3D printing. Topology optimization methods are
used to compute the inverse design of the underwater metasur-
faces [33], insulators [34], nano structures [35], and mechanical
springs [36]. A relevant work [25] utilized a bottom-up optimiza-
tion method to explore the inverse solution of a clamped-free rod
expressed by a mass-spring model.

However, few prior works consider the influence of uncertainties
during the inverse design process. Noise is always present when

measuring and modeling deformed elastic shapes, significantly
affecting the accuracy of inverse design approaches. Addressing
these modeling and measurement uncertainties often necessi-
tates a cumbersome process of data processing and model modifi-
cation [30]. Consequently, most of the above-stated works assume
clean experimental data or just stall in the simulations, neglecting
the impact of noise on their outcomes.

As data science advances, data-driven approaches show great
potential in tackling the inverse design of engineering prob-
lems. For example, physics-informed neural networks (PINNSs)
[37] and neural ordinary differential equations (neural ODESs)
[38] have demonstrated significant promise in encoding the
physics of a system within a neural network. Machine learn-
ing communities introduce physical laws as constraints to guide
the training of models to meet specific design requirements.
These data-driven approaches have become popular in inverse
design problems due to their adjustable regularization and bet-
ter robustness to uncertainties compared to traditional inverse
design approaches [39]. For instance, Lu et al. [40] successfully
implemented PINNs to solve a series of inverse problems in solid
and fluid mechanics. However, considering the gray-box prop-
erties of these physics-informed neural networks, the accuracy
of solutions remains a bottleneck for data-driven inverse design
approaches.

In this study, we leverage the theoretical foundation of traditional
inverse design approaches and the data-driven framework from
the machine learning community to propose an innovative solu-
tion for exploring the inverse design of elastic structures. Specif-
ically, we focus on the inverse design problem of a planar rod:
Given the material properties and the targeted shape of the rod
under external loading, our objective is to determine the natural
shape of the rod. We represent the natural shape of the rod using
a surrogate model and combine this with elastic theory to formu-
late the inverse design solutions. Our approach aims to achieve
not only sufficient accuracy but also enhanced robustness against
uncertainties in the system. Moreover, we release all our code for
the proposed scheme as open-source software.!

The following article is structured as follows. Section 2 discusses
the problem that needs to be solved in detail. Section 3 provides
the theoretical foundation, including the equilibrium of planar
rods and the theoretical solution of the inverse problem. Section 4
discusses the harmfulness of uncertainties in the modeling and
measurements for the theoretical solution and details our pro-
posed method for tackling the inverse design problem with uncer-
tainties. Section 5 showcases experimental results and relevant
applications. Finally, Section 6 concludes the paper and shows
potential future work.

2 | Problem Description

This study focuses on the inverse design problem of a
two-dimensional clamped-free elastic rod subjected to exter-
nal loading f, and f, (as shown in Figure 2). Specifically, the
goal is to reconstruct the undeformed, natural shape of the rod
from its measured deformed configuration I',,, known material
properties, and specified external loading. Notably, the detec-
tion of the deformed configuration is typically performed using
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FIGURE1 | Inversedesignofan artificial orchid: The left image depicts its natural, pre-deformed shape, while the right shows its final configuration

after deforming under gravity.
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Noisy detection X
FIGURE2 | Diagram illustrating the deformation process of an elastic rod with a clamped-free configuration under the influence of external loading

fy and f,. The detection and segmentation of the structure are performed using a finite number of pixel points, as yellow dotted points, with white

noise present in the measurement process.

digital sensors, such as cameras, which introduce quantization
noise during the measurement process—a factor often ignored
in prior works. This noise complicates the inverse design process
of soft rods.

The primary objective of this paper is to propose a robust and
efficient scheme to extract the natural shape of the elastic rod
accurately. The proposed method aims to ensure that the rod’s
reconstructed deformed configuration I" under the specific exter-
nal loading closely matches the noisy measured data I',,. The
robust and accurate inverse design scheme is critical for appli-
cations that rely on precise deformation modeling and structural
analysis.

3 | Background: Equilibrium of a 2D Planar
Rod

Before delving into the inverse design problem, let us straighten
out the fundamental principles governing the intrinsic statics of
a planar rod subject to external loading.

In this work, we focus on a two-dimensional scenario involv-
ing an inextensible and unsharable rod of length S. The rod is

composed of a homogeneous, linearly elastic material. The pri-
mary source of non-linearity in the system arises from geomet-
ric non-linear deformations due to the slenderness of the rod.
This rod is depicted by a center line T € R2, along with a rota-
tion angle 6 € R, both parameterized by arc length s € [0, S].
To simplify the interpretation of the rod’s geometry, we define
a two-dimensional Cartesian coordinate and designate the end
located at s = 0 as the origin and the negative direction of grav-
ity as the y-axis. Hereafter, all vectors with (*) are unit vectors.
At given location s, the vector I'(s) denotes the 2D position (x, y)
of the center line, while the first derivative of rotation angle 6(s)
encodes the bending curvature attached to the rod’s cross-section.
Note that we simplify notations of variables that are functions
of s, such as I'(s), to ' throughout this manuscript’s equations.
Given the rod is assumed to be inextensible and unshearable, the
following equation holds true:

Vs €0,8] I’ =[cosb,sind] 1)

where () stands for the first derivative with respect to s, with
higher-order derivatives represented accordingly, such as ()" is
the second-order derivative and ()"’ is the third-order derivative
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FIGURE 3 | The schematic illustrates a planar rod subjected to specified external forces and constraints. The inset provides a detailed free-body
diagram of an arbitrary finite element, highlighting the internal forces and moments acting within the structure.

hereafter. We further assume that the rod is fixed at s = 0, indi-
cating this end is clamped. Meanwhile, the other end at s = .§
is free.

3.1 | Forward Mechanics Model

To establish the equilibrium equations of the planar rod, we start
with an element ds of the rod. The element and the acting forces
are shown in Figure 3. A tension force T'(s) is acting in the direc-
tion of the tangent at position s, and the shear force, defined as the
force perpendicular to a tension force, is denoted as V (s). In the
Cartesian coordinate, 6(s) is defined by the angle between the tan-
gentand the horizontal axis €, . In this manuscript, we assume the
rod is only subjected to the known external load, such as gravity,
which can be expressed by f,€, + f,€,. Note that density p and
cross-sectional A area are treated as constants during the anal-
ysis. For the element in equilibrium, the sum of forces must be
zero, which can derive the following equations:

i(TcosH +V'sinf) = —f,

ds

di(Tsine—Vcose)z—fy 2)
S

Meanwhile, the sum of the moments must be zero as well, which
leads to:

dm
y =2
ds

3
Let E be the Young modulus of the rod, and I be the second
moment of area of the rod’s cross-section. Static equations are
complemented by a constitutive law that characterizes the rod’s
elastic bending behavior:

Vs €[0,S] M =EIl(x—x,)=EI —«,) @
where ET is the bending stiffness of the planar rod, k(s) = 0’'(s) €

R is the curvature of the planar rod, and x,(s) € R encompasses
the natural curvature of the rod, namely, the shape of the rod

would assume in the absence of external forces, which may not
be straight. Given modeling the homogeneous material, the stift-
ness E T is considered constant. Conversely, the natural curvature
Kk,(s) may vary spatially to encapsulate a diverse range of natural
shapes. Next, combining Equations (3) and (4), we obtain:

V = EI0" - k) (5)

and we introduce new variables:

=M
pAg
a4
V=—
pAg
7o L
pAg
. fx
fi=
pAg
— f
fy=— (6)
Y pAg

where p is the volumetric mass density, A is the cross-sectional
area, and g is the gravitational acceleration. Here, gravity is used
to scale the external loading.

By substituting Equations (5) and (6) to Equation (2), we can
obtain:

4 (Tcos@ + l(19” — ky)sin 0) =—7.
ds n

dis (Tsin@ - %(0" — k() COS 0) = —7y @)
where n = pAg/EI characterizes the bending deformations
under the external load (gravity). Since a system of first-order dif-
ferential equations (ODE) can be created from the higher-order
ODEg, the system of the first ODEs can be constructed by comb-
ing Equations (1, 5, 6, and 7):
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q=1[0,M,V,T,x,yI"

d
R@=£<M)o

n4q, + Ky
a3
- 7): sing; + ?y CoS q; + 1q,(q, + %K‘O)
— f,cosq, — 7y sing, — nq;(q, + %,Ko)
coS q;

f@,x) = (©)

sin g,
where ¢; means the i — th element of q(s). Note that all quantities,
including material properties #, external loading f, and f, as
well as natural curvature k, are known when solving the forward
pass of the rod’s statics.

Moving forward, we list the boundary conditions for the ODEs.
First, the clamped boundary at location s = 0 is:

I'(s =0)=TIy,, Enforced clamped position
Clamped:

0(s =0) =6,, Enforced clamped rotation

where I'jy and 6, are the given values, and I, is defined as the
origin of the coordinate system. Second, the free boundary at loca-
tion s = S is:

M(s =S)=0, No external torque at the free end
Free:q T(s=S)=V(s=S5)=0, No external force at (10)

the free end

Combining the rod’s governing equation stated in Equation (8)
and boundary conditions in Equations (9 and 10), we can get
the equilibrium configuration of a planar rod in arbitrary natural
shape, which is depicted by x(s).

3.2 | Inverse Design Formulation

As our interest here is the inverse design for the 2D planar rod,
and, from the input target curve I'(s), we aim at finding its nat-
ural curvature k(s) so that I'(s) coincides with the center line
of the planar rod at equilibrium under external loading. Starting
from the rod’s governing equation stated in Equation (8), we can
outline the following equation:

0" — Kl - n?y cos 6 + n?x sin 0

T = 11
7 an
—
We can calculate T' (s) based on Equation (11):
— 0"k + 0"kl + 0" 0" — 00" +n0*(f, cos O + [, sin 6)
_ +110”(?y cosf — f_sinf) + 116"(7:C sin — 7; cos 6)
Tr =
no’
=0. 12)

Then, substituting Equation (12) to Equation (8), we can obtain
the following equation:

0”('(/)/’ _ 0”’('6/ + 6/3,(_6 _ 9////9/ + 0///6//
—0"(nf,cos0 —nf, sing+0") —2n0*(f, cos0 + f,sin6)

+ ;10’(7; cosé —7; sinf) =0 (13)

When the curve I'(s) is determined, all 8(s) and its derivatives
are known. Therein, Equation (13) is an ordinary differential
equation for variable «;(s). Once the boundary conditions are
determined, we can obtain the theoretical solution of the inverse
design problem by solving Equation (13). The boundary condi-
tions for the Equation (13):

Free: k)(s =) =0"(s = .5)
Free: k(s = 8)=0"(s=S5)
+n(f,sinb(s = ) - f,sin(@(s = 5)) (14)

However, we can find that the solution of Equation (13) is «/(s).
Therein, we need to do the integration to obtain «(s). To calculate
the natural curvature of the planar rod, we need to give the initial
boundary condition for «(s):

Free: ko(s =5)=0'(s = 5) (15)

Combining Equations (13-15), we can solve the elastica of the
inverse problem.

4 | Inverse Design From Noisy Data

In Section 3.2, we present the elastica for the inverse design of a
planar rod. However, our analysis above does not account for the
influence of uncertainties in this engineering problem. Given the
theoretical framework is based on the expression of 6(s), which is
usually from the measured target shape I',,. Therein, the uncer-
tainties in this problem primarily come from two aspects: The
uncertainties from the modeling and the uncertainties that exist
in the measurements. To address the gap brought by the uncer-
tainties, we first investigate the impact of uncertainties on the
formulated theoretical framework. Then, we explore strategies to
mitigate the adverse effects of uncertainties on the inverse design
process.

4.1 | Uncertaintiesin the Modeling

When computing the theoretical solution derived from
Equation (13), the analysis is established on 6(s) obtaining
by the combination of I'(s) and Equation (1). Given the solution’s
accuracy is closely tied to the high-order derivatives of 6(s),
which are highly sensitive to the selection of the surrogate model
used to describe 6(s), both overfitting and underfitting of the
surrogate model can lead to significant deviations in the solution.

In Figure 4, we illustrate the influence of the chosen model on the
theoretical solutions with an example. Here, we aim to design the
natural shape of a rod so that it forms the letter “A” under gravity,
asshown in Figure 4a. The letter “A” is extracted from a handwrit-
ten note using a digital camera, so that the sensor measurement
noise exists in the image. For simplicity, we use a polynomial
regression model to represent 6(s) calculated from the pattern
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Influence of the chosen surrogate model for expression 6(s). (a) The designed target shape - letter “A” under gravity. (b) The comparison

of the deformed shapes computed from the natural shape solved by different fitted models. (c) The comparison between raw data and fitted data from the
polynomial regression model with degrees 6, 11, and 16 for 6(s). (d) The comparison between raw data and fitted data for 6’(s). Note that the normalized

arc length § = s/..

of “A”. When the polynomial degree of the fitting model is low
(e.g., 6), the model is underfitted, leading to a noticeable differ-
ence between the fitted model and the raw data of 6(s), as shown
in Figure 4c. Increasing the polynomial degree (e.g., 16) elimi-
nates such a difference but can result in overfitting. As shown in
Figure 4d, excessively high fitting degrees cause significant devi-
ations in 0’(s). We compare the accuracy of theoretical solutions
from different fitted models of 8(s) as shown in Figure 4b. The
stated theoretical framework does not have mechanisms for such
a model’s uncertainties. Thus, when parameterizing 6(s), man-
aging the uncertainties associated with the model selection is
crucial.

4.2 | Influence of the Noisy Data

In real-world engineering applications, sensors such as cameras
are commonly employed to measure a rod’s deformed configura-
tion I'(s). However, it is crucial to acknowledge that sensor usage
makes uncertainty and noise inevitable. In addition to modeling
uncertainties, measurement noise becomes a significant source of
uncertainty in this problem. Therein, the measured curve dataset

I, ={xD, y")}N for the inverse design problem can be:

) — (D) ()
X, =x"+e€,

¥ = 0 4 0 16)
where ¢! and e are independent Gaussian noises with zero
mean. We also presume that the fidelity of the sensor is prede-
termined, i.e., the standard deviations of ¢/’ and ef) are known
to be ¢ and a;i). In Figure 5, we show the influence of Gaus-
sian noise on the accuracy of the theoretical solutions obtained
from Equation (13). Since Equation (13) is heavily dependent on
the precision of high-order derivatives of (s), which are partic-
ularly sensitive to noise in measured data I',,, the uncertainty
existing in this system significantly diminishes the accuracy of
the theoretical solutions. Additionally, the Gaussian-distributed
noise introduces inconsistencies in the parameterization of 6(s)
across different measurement sequences, leading to substantial
deviations in the theoretical solutions for the same target shape.
Moreover, the uncertainties introduced by inherent polynomial
parameterization of 6(s) prevent the error of the theoretical base-
line from approaching zero. A robust scheme for the inverse
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FIGURES5 | Influence of measurement noise on inverse design solutions. (a) Schematic of measuring the target shape, the letter “A,” using a sensor

(e.g., camera). (b) Impact of measurement error o on the accuracy of different approaches. The theory baseline represents the result obtained from the

theoretical framework without added noise; the noise baseline represents the result obtained from the theoretical framework with added noise; the

proposed scheme is our proposed optimal method (the learning framework detailed in Section 4.3) designed to be robust against uncertainties.

design problem is imperative to compensate for the detrimental
effects of the above-stated uncertainties.

4.3 | Learning Framework - the Optimal
Inverse Design Solution

In the theoretical framework, we need to model 6(s) and evalu-
ate its high-order derivatives to obtain the designed parameters
Kk, (s). However, due to diffusion of measurement noise affecting
the higher-order derivatives of 8(s) and the uncertainty in model
selection, directly employing this framework may lead to con-
siderable deviations in determining the design parameter & (s).
To address this challenge, we propose a novel forward frame-
work aimed at directly evaluating the measured target shape I',,
with improved robustness against uncertainties. This approach
enables us to avoid directly modeling 6(s) and mitigate the impact
of measurement errors, thus enhancing the accuracy of solving
for the design parameter «,(s) within the framework.

The proposed forward framework is inspired by the physically
informed neural networks (PINN) [37], which has proven its effi-
cacy in solving inverse design problems in many different physi-
cal scenarios. Here, we treat the design parameter, natural curva-
ture k, as an unknown, then the ODE in Equation (8) becomes:

dq

R(Q. ko) = 77

—f(Q.x) =0 an

where q = q(s) is the forward solution of the deformed rod. Here,
we start by representing k, with a surrogate model «, (s, ¢), where
¢ is the vector of parameters in the surrogate model. Then, we can
rewrite Equation (8) as:

R(q, ko(s. ) =0 (18)

By solving Equation (18) with an explicit Runge-Kutta
method [41], we can obtain the expression of x(s, ¢) and y(s, ¢)
directly. Then, the likelihood can be calculated as:

P, |¢) =PI, |$)PT,|d)
N . .
(x@ — x()2
P I¢) = [[—— exp(—'"—,2>
i=1 4 [ 6®? 26

N (i) (i))2
1 0y =y
P |¢) = H—2 €xp| T (19)
=1 27r0';‘) 20,
We take the logarithm on both sides of Equation (19) to get the
loss function:

N
L@ = —log PT,[#) ~ Y () = xOP + 0 = y) (20)
i=1

which is just the classical mean squared error (MSE) loss. In our
designed training loop, MSE loss should be minimized to obtain
the optimal parameters ¢ for depicting the surrogate model k.

4.4 | Adjoint Method - Back Differentiation

In Equation (20), we can find the relationship of the loss func-
tion to the parameters ¢ of the surrogate model of «; is implicit
since x and y® are obtained by solving Equation (8). There-
fore, the main technical difficulty in the training loop is explor-
ing the reverse-mode differentiation. Considering the memory
cost and computational speed, using numerical schemes like
finite element difference to compute the gradient V , L is inappro-
priate here. Inspired by the backward differentiation in Neural
ODE [38], we compute the gradients using the adjoint sensitiv-
ity method [42]. This approach computes gradients by solving a
second, augmented ODE backward in time and is applicable to
the training loop. This approach scales linearly with problem size,
has low memory cost, and explicitly controls numerical error.

To formulate the adjoint method, we first rewrite the loss to an
optimization object:

L. $) ~ / g, 5)ds = q7Qq,ds 1)
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with
q,=9q-10,0,0,0,x,,,1" (22)

and

000000]
000000
000000
Q= (23)
000000
000010

00000 1]

where the loss defined here is equally effective to the loss in
Equation (20). Therein, we can formulate a constrained optimiza-
tion problem:

m(gn L(q, )

s.t. d_q =1(q,s, p)
ds

To solve the constrained optimization, we can formulate a
Lagrangian:

d
£=/<g(q,¢)+ﬂ<f— d—q>)ds, with 1 € R® (24)
N
We employ the differentiation on two sides:

de _ [ (95 ,r0f (9% rof  di)da
i (a¢+/l a¢+ aq+/l 6q+ds a9 ds

dq(o dq(S
#2007 220 - a9 23)

Here, we choose A(s), which can be solved by:

di __9g _rof

=2 = 26
ds oq oq (26)
with the specified boundary conditions as follows:
Clamped: A;(s=0)=0 fori=2,3,4
Free: A,(s=S)=0 fori=1,5,6 27

Then, plugging the solution of A(s) to Equation (25), the gradient
of loss can be obtained:

AL [ (08, 0\ [0
VyL= i <a¢+/1 aq))ds—//l aq)ds (28)

With the help of the computed gradient ¥V, L, we utilize Adam
optimizer - one of the most classical machine learning optimiz-
ers — to train the surrogate model. The full algorithm is shown in
Algorithm 1.

ALGORITHM1 | Inverse Design Process.

Input: I[,.,n.S, /. [,
Output: k

1: a « learning rate of Adam optimizer

2: f|,p, « moment estimate decay rate

3: €< a small constant

4: 00 « initialized with Equation 1

5: K'(()o) « initialized with Equations 13-15

6: ¢(0) «— initialized by regressing K(()O)

7: L+« initialize with a large constant

8: i« 0

9: while i< max iter do

10: Ko(s) < computed with the surrogate
model ky(s; )

11: q(s) « solved by Equations 8-10

12: L « loss computed by Equation 21

13: if L< small threshold then

14: break

15: end if

16: A(s) « solved by the augmented ODE
(Equation 26) and corresponding BCs
(Equation 27)

17: V¢L<— computed with Equation 28

18: A < ADAM(a,ﬁl,ﬁ2,€,¢,V¢L)

19. )« ¢ — A

20: i—i+1

21: end while

22: ¢* « ¢

23: k; < computed by the surrogate model

Ko(SQ(IS*)

24: return k

5 | Numerical Validation

In this section, we present comprehensive quantitative results to
evaluate the performance of our proposed learning framework for
the inverse design of planar rods. First, we compare the perfor-
mance of the theoretical framework and the learning framework
in processing artificially generated noisy curves. Subsequently,
we explore an engineering application of the inverse design pro-
cess: Can we design planar rods with varying stiffness to form a
target pattern designed by users? We use a camera to detect and
extract the pattern drawn on paper, which is then used as input
for our proposed scheme. Furthermore, we validate the effective-
ness of the method in solving the inverse design problem for a
magneto-elastic rod. Those results further demonstrate the effi-
cacy of our method.

51 | Comparison Between the Theoretical
and Learning Frameworks

Here, we generated multiple artificial target curves to evaluate
the performance of the theoretical and learning frameworks.
Generally, the target pattern I', which is the deformed configu-
ration of a planar rod under gravity, should be smooth due to
the rod’s elasticity. Since we aim to mimic a real engineering sce-
nario, measurement noise should be introduced to these smooth
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FIGURE 6 | Arandomly generated curve used to validate the effect of varying noise levels, characterized by the standard deviation ¢ = 0.002 (unit:
m). The deformed shapes (green) are computed from the natural shape (blue) obtained by the fitted model. (a) Ground truth. (b) Predicted shape through

optimal inverse design from noisy data. (c) Predicted shapes through inverse solver from noisy data.
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FIGURE7 | Evaluation of the inverse design accuracy for various target patterns with different measurement noise and material properties. ey

denotes the difference between the deformed configuration derived from the natural shape solved with the theoretical framework and the measured

target shape, while e°?* denotes the difference between the deformed configuration derived from the natural shape solved with the learning framework

and the measured target shape. For each combination of the standard deviation of the measurement noise ¢ (unit: m) and the rod’s material properties

n, 10 target patterns are randomly generated to evaluate the inverse design framework’s accuracy.

curves. The protocol for preparing the noisy measured dataset of
target shapes is as follows. First, we define the rotation angle 6(s)
using a polynomial function with coefficients randomly gener-
ated within a specific range, e.g., [-10, 10]. We then recover the
deformed curve I'(s) from the randomly generated 6(s). Next, we
sample points from the deformed curve. To each sampling point,
we add artificial Gaussian noise with a specific standard deviation
o to mimic measurement noise. The resulting sampled discrete
noisy dataset I',, is then used as input to compute the natural
shape of the designed planar rod, as illustrated in Figure 6.

Once the measured dataset I',, is obtained, we utilize both the
theoretical and learning frameworks to solve the inverse design
problem. Hereafter, all quantities related to the theoretical frame-
work are denoted with the superscript “theory,” and quantities
related to our learning framework are denoted with “opt.” For the
theoretical framework, we need to construct a model to param-
eterize Y (s) from I',,. This parameterized M°V(s) is then
used in Equation (13) to determine the natural curvature K(;he‘"y
of the rod. As for the learning framework, we can compute the
natural curvature x;” with Algorithm 1. By substituting natural
curvature k, into Equation (8), we can solve the rod’s deformed
configuration I, corresponding to the different frameworks. The

performance of the different frameworks is evaluated by compar-
ing the average difference

[IT(s) =T, ||
e = mean—— "

s€[0,5] S (29)

A smaller difference in e value indicates better performance.

In Figure 6, we illustrate the impact of noisy measured data on the
results of different frameworks. We can find that the theoretical
solution is sensitive to noise, as shown in Figure 6c¢, while our pro-
posed learning framework is robust against the noise, accurately
determining the natural shape of the planar rod so that it can
deform to the prescribed pattern exactly, as shown in Figure 6b.

To comprehensively evaluate the performance of the two frame-
works, we randomly generate 120 target shapes and assess how
each framework handles planar rods with varying stiffness. The
differences between the predicted deformed configurations and
the noise-measured data are given in Figure 7. We can find e°*
is much smaller compared to the ™", The difference between
%Pt and ey becomes more significant when the standard devi-
ation of the noise is larger, indicating that our learning frame-
work performs better in robustly reconstructing the natural shape
of a planar rod from noisy data. We also evaluate the perfor-
mance of both frameworks for planar rods with different stiffness.
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FIGURE 8 | Three sample cases demonstrating variations in geometric patterns: (a) circle (7 = 15, ¢ = 0.002), (b) spiral (n = 15, ¢ = 0.002), and (c)

cross composed of intertwined sine curves (1 = 5,0 = 0.002).

The learning framework consistently achieves high-performance
across various planar rods with different stiffness demonstrat-
ing that our proposed learning framework can achieve robust
and accurate inverse design results for rods made from various
materials, whereas the theoretical framework generally performs
poorly in nearly all cases.

The performance of the learning framework for the inverse
design is also illustrated with three canonical cases: A circle, a
spiral, and a cross composed of sinusoidal curves in Figure 8.

5.2 | Case Study 1: Designing Planar Rods From
Sketches

In this subsection, we demonstrate the ability to construct the
natural shape of the rod with target shapes derived from human
writing. Computer vision has become a powerful tool in vari-
ous engineering fields, including pattern recognition and rapid
measurement [43-45]. With recent advancements in detect-
ing deformable linear objects [46], we can now use a cam-
era (Realsense D435i) to extract patterns from human-drawn
sketches in real-time, enabling us to easily obtain the desired tar-
get shapes. Here, we showcase the pattern acquisition process for
the four letters “U”, “C”, “L”, and “A”, as shown in Figure 9a.

Once the discretized patterns are obtained, we can design the
target shape and boundary conditions for the inverse design
problem, as shown in Figure 9b. Here, we employ our proposed
learning framework to execute inverse design for planar rods with
different stiffness. First, we need to select a surrogate model to
express k,(s). This surrogate model can be any parameterized
model, e.g., polynomial regression model, neural network, etc.
Here, we use a polynomial regression model. This model has a
single controlling parameter: The fitting degree number n. We

select a relatively high-degree number n = 14 to model «,(s) to
prevent the underfitting issue. As shown in Figure 9, our pro-
posed learning framework can generalize to different handwrit-
ing patterns and material properties. The solutions generated
by our method closely match the target shapes with minimal
discrepancy, demonstrating its robustness against measurement
noise and its effective regularization on the surrogate model.

5.3 | Case Study 2: Designing Planar Rods
Under Arbitrary Loading

In this subsection, we demonstrate the capability to compute the
natural shape of soft structures (specifically planar rods) such
that they deform into a desired target shape under arbitrary exter-
nal loading.

Here, we generate a target shape, shown in green in Figure 10,
and analyze its natural shape under different external loading
conditions. We examine three cases: (1) gravity-induced deforma-
tion, where the rod deforms under its own weight, (2) deforma-
tion under a linearly distributed load, where the external loading
varies linearly along s, and (3) deformation under a sinusoidally
distributed load, where the external force follows a sinusoidal
function.

In particular, while the final shape remains the same, the nat-
ural shape of the rod varies depending on the external load-
ing conditions. As shown in Figure 10, our proposed method
can accurately determine these natural shapes, highlighting its
effectiveness in the design of soft structures subjected to varying
external loads. The solutions generated by our method closely
match the target shapes with minimal discrepancy. This high-
lights its potential for inverse design applications that require
precise shape programming under arbitrary external forces, such
as soft actuators responding to prescribed actuation inputs.

10 of 14

International Journal for Numerical Methods in Engineering, 2025

85U8017 SUOWILWIOD 8AIIeID) 3|cedljdde ays Aq peuenob afe sspoiie YO ‘sn JO Sa|ni Joj Areiq18UIIUO 8|1 UO (SUORIPUOD-pUe-SLLIBY/LICO" A3 |1 AR 1B [UO//SANY) SUORIPUOD PUe SWB | 8U 885 *[GZ0Z/70/70] UO AReiqiTauliuo A8|IM ‘ 80Ueios JO A1SeAIuN - Aq 8TO0L3WU/Z00T OT/I0P/W0 A8 1M Aeiq 1 jeuluo//Sdny Wwouy pepeojumod ‘G ‘SZ0Z ‘2020260T



(a) Hand writting Extracted patterns
0 0
200 200
400 400
600 600

0 250 500 750 1000 1250 0 250 500 750 1000 1250
(b) Target shape

Y
— — , —
(©) Inverse design with 7 = 10
e Wy SN g s ) o
(d Inverse design with 7 = 15
) @ 'ieee"’fj’ S~
oA/ e L NS
—
0.3 m ==@=—=Undeformed, opt === Deformed, opt
FIGUREY9 | Inverse design from sketches. (a) Handwritten letters (left) and their corresponding discretized patterns (right), were captured using

an Intel RealSense D435i camera at a resolution of 1, 280 x 720. (b) The target deformed shapes of the handwritten letters “U,” “C,” “L,” and “A” under
gravity. (c) Inversely designed undeformed rod configurations with # = 10. (d) Inversely designed undeformed rod configurations with n = 15.
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FIGURE 10 | Inverse design of a planar rod under various external loading. (a) Inversely designed undeformed rod configurations with n = 15 and

o = 0.001 under loading condition 7X(§) =0and 7y(§) = —1. (b) Inversely designed undeformed rod configurations with # = 15 and ¢ = 0.001 under
loading condition 7x(§) =0and 7y(§) = —3. (c) Inversely designed undeformed rod configurations with # = 15 and ¢ = 0.001 under loading condition
7 (3) = cos(2x3) and £ (5) = sin(2x3).
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FIGURE 11 | Inverse design of magneto-elastic rods. The computed undeformed rod configurations with 5 = 10, B= [1,0], and ¢ = 0.001 with

three different rod configurations are presented.

54 | Case Study 3: Inverse Design of Planar
Magneto-Elastic Rods

One significant advantage of the proposed approach is its gen-
erality in solving inverse design problems for various soft struc-
tures, provided that a forward solver for the structure is available.
In other words, there is no need to derive an explicit theoreti-
cal solution for the inverse problem, since our method can be
directly applied as long as the forward solver is known. To illus-
trate this versatility, we present a case study on the inverse design
of magneto-elastic rods, which have significant practical applica-
tions in the medical field [47, 48].

First, we establish the forward solver by deriving the equilibrium
equation for a magneto-elastic rod. We assume that the rod’s mag-
netization is always aligned with its tangent direction, with a
magnetization intensity denoted by M. Here, we assume that the
magnetization is along the rod tangential direction. The external
magnetic field is considered uniform and is represented by the
vector B. Therein, the governing equation is as follows:

q=1[0,M,V,T,x,y"

d
R(qQ) = d—‘: — f(@=0

ng, + ko — (Ey cosq; — EX sing;)
q3
+ K, — (B, cosq, — B, sin
7@ k) = q4nq, o0~ ( y q1 Px ' )] (30)
—q3lng, + kg — (B, cosq; — B, sing)]
cos ¢,
| sin ¢, ]
where B = [EX,EY] is the variable standing for the influence of
external magnetic field vector, defined as B= %f‘f”.

The boundary conditions of the inverse problem studied here
remain consistent with Equations (9) and (10). Therein, we
can apply Algorithm 1 to derive the natural shape of the
Magento-elastic rod by replacing the forward solver stated in
Equations (8-30). To validate the effectiveness of our approach,
we design the natural shape of a magneto-elastic rod for three dif-
ferent target shapes. As shown in Figure 11, the results are highly
consistent with expectations, further reinforcing our claim that
the proposed method is broadly applicable to inverse design prob-
lems for a general class of soft structures.

6 | Conclusions

In this article, we combine the elastic theory and machine learn-
ing algorithms to propose an efficient and robust learning frame-
work for the inverse design of elastic rods from noisy measure-
ment data. Inspired by physically informed neural networks, we
design a forward structure based on the elastic theory of rods. We
then define a loss function to represent the inverse design objec-
tive, enabling us to use reverse differentiation to optimize the
relevant parameters - the natural shape of the rod. With compre-
hensive numerical validations, our proposed learning framework
is proven to be valid in exploring the natural shape of the rod to
minimize the designed loss function so that excellent agreements
can be found between the target patterns and designed deformed
rods. The learning framework provides an effective scheme to
solve inverse design problems of soft structures with imperfect
measurements. The framework can provide valuable insights into
real-world manufacturing of flexible structures such as soft robot
design.

Future research could explore several promising directions to
extend the presented approach. One avenue involves generalizing
the framework to other types of structures. The proposed method
is designed to explore inverse design solutions for any structure
with a well-defined forward equation. Testing and validating the
framework on more complex systems represents a natural pro-
gression of this work. Furthermore, beyond external loading and
natural shape, other factors also play critical roles in determin-
ing structural deformation. For instance, external magnetic fields
significantly influence the deformation of magneto-elastic struc-
tures. Addressing the inverse design of such fields to achieve
desired structural configurations introduces a compelling new
challenge that deserves further investigation. Another potential
extension is the incorporation of more sophisticated material
models, such as those accounting for anisotropy or viscoelastic-
ity, to enhance the framework’s versatility in real-world applica-
tions. By pursuing these directions, the proposed approach can
significantly expand its scope and impact, contributing to broader
advancements in structural design and optimization.
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Endnotes

1 See https://github.com/DezhongT/Inverse_Design_2D_Rods.
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