
Biomimetic Turing machine: A multiscale theoretical framework 
for the inverse design of target space curves

JiaHao Li a,1, Xiaohao Sun a,1, ZeZhou He a, YuanZhen Hou a, HengAn Wu a,b,*, 
YinBo Zhu a,*

a CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of 
China, Hefei 230027, China
b State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, 
China

A R T I C L E  I N F O

Keywords:
Morphing materials
Space curves
Programmable ribbon
Inverse design
Microstructure encoding

A B S T R A C T

Morphing ribbons and their inverse design are usually confined to plane curves, since in most 
cases only the curvature is considered. Given that curvature and torsion are equally important 
geometric characteristics of space curves, it is urgent to propose a systematic theoretical frame-
work for the inverse design. Toward this end, we here present a multiscale theoretical framework 
named biomimetic Turing machine (BTM) to achieve desired target space curves, which is 
inspired from two microstructural regulation mechanisms behind the hydration-driven morphing 
of plant tissues: the graded curvature regulated by matrix volume fraction (cm) and the helix-like 
morphology regulated by fibril orientation angle (FOA). By analogizing to Turing machine 
encoded by binary mapping, the proposed BTM can inversely encode a morphing ribbon with 
preset microstructural parameters (FOA and cm) to achieve desired target space curves. The 
proposed theoretical framework can first bridge the microstructural fiber-matrix swelling and the 
macroscopic ribbon morphing as a forward problem, in which a twist field is subsequently 
introduced to create the kinematic map between the target space curve and the ribbon, inno-
vatively posing the inverse design as an initial value problem. To facilitate the experimental 
implementation of BTM, we further propose an optimization strategy for selecting the twist field 
and provide design criteria as guidelines for experiments. As a conceptual display, we present a 
phase diagram in the cm versus FOA plane to illustrate the complex target morphologies (e.g., 
hemisphere, hyperboloid, and tendril) characterized by various parameters of curvature and 
torsion designed rationally by the BTM theory, while in previous studies the morphing mor-
phologies (e.g., helices, arcs, and helicoid ribbons) exhibit only constant curvature or torsion. 
This work presents a novel inverse design strategy for space curves with both curvature and 
torsion, broadening the potential for the design and fabrication of morphing materials.

1. Introduction

Programmable materials have garnered significant attention in recent years due to their controllable mechanical, optical, acoustic, 
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morphological, and other physical properties. Among these, morphing materials are the most widely concerned, as they can alter the 
geometrical shape in response to external stimuli. Due to their exceptional deformation controllability, morphing materials have found 
extensive applications in various engineering fields, including wearable electronics (Shen et al., 2024), biomedical devices, robotics 
(Ha et al., 2020; Shin et al., 2018), food processing (Tao et al., 2021), the aerospace industry (Zhang et al., 2022), and agriculture (Luo 
et al., 2023).

Realizing the morphology design of morphing material draws great concern both theoretically and experimentally during past two 
decades. As a pioneering work, Sharon et al. developed the theoretical framework of non-Euclidean elastic plates (Armon et al., 2011; 
Efrati et al., 2009; Klein et al., 2007), in which an intermediate configuration is introduced to describe the stress-free state. The 
non-Euclidean elastic plate theory suggests that the stretch energy of a non-Euclidean elastic plate can be represented as the Poisson’s 
ratio-weighted L^2 norm of the first fundamental form of the surface between the target and intermediate configurations. Similarly, the 
bending energy can be represented as the L^2 norm of the second fundamental form (Efrati et al., 2009; Pezzulla et al., 2017). The 
equivalence of energy form between non-Euclidean elastic plates and bilayer plates is elucidated by (Van Rees et al., 2017). Building on 
this theory, the feasibility of morphing plate has been experimentally realized through the pneumatic and thermal actuation (Aharoni 
et al., 2018; Boley et al., 2019; Siéfert et al., 2019). This technology even allows for the morphing of complex target shapes, such as 
human faces and flowers (Sydney Gladman et al., 2016).

Although considerable effort efforts have been made on the rational design of morphing materials, there are two issues remain 
unresolved. Firstly, due to the geometry restriction by 2D structures of morphing plate, realizing the inverse design of the complex 
target shape from plate is still a challenging problem. For example, if we want to morph a target shape with large Gaussian curvature 

Fig. 1. Basic concept of the BTM. (a) Schematic illustration of the BTM encoded by the volume fraction and the fiber orientation angle inspired from 
hydration actuated movements of plant tissues: non-uniform distribution of lignin volume fraction in Selaginella lepidophylla (Rafsanjani et al., 2015) 
reproduced with permission, Copyright 2015, Springer Nature Publications and fiber orientation angle in plant cell wall (Cosgrove, 2024) repro-
duced with permission, Copyright 2024, Springer Nature Publications. (b) The analogy of input, rule and output between Turing machine and BTM.
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such as sphere from a plate, significant in-plane stretching is required according to Theorema Egregium (Pezzulla et al., 2016; Siéfert 
et al., 2019). Unfortunately, Timoshenko’s formula only holds for small mismatched strain and large residual strain causes complicated 
nonlinear relationship between curvature, external stimuli and geometric sizes (Liu et al., 2023, 2019; Timoshenko, 1925). Secondly, 
to the best of our knowledge, the morphologies of morphing ribbons in previous studies are confined to two categories: the plane 
curves, where only curvature is considered, and helices or helicoids with constant curvature and torsion (Sun et al., 2024, 2022). The 
inverse design of target space curves framed by both curvature and torsion has not been adequately investigated. Therefore, the 
question arises: can we manipulate the microstructures of a morphing ribbon to attain a targeted space curve with both curvature and 
torsion, thereby achieving the inverse design of curve-discretized surfaces with significant Gaussian curvature?

Nature shows us the answer. The movement of hydration actuated plant tissues brought about widespread attention during past 
three decades (Quan et al., 2020). Although morphologies of hydration actuated plant tissues are different in colorful ways, the 
mechanisms of hydration actuation patterns can be classified into two types. The first one is the gradient curvature of bilayer structures 
caused by the non-uniform volume fraction (cm) of amorphous matter (e.g., lignin and hemicellulose) known as gradient lignification. 
This has been observed in Selaginella lepidophylla, pine cones, and other plant species (Rafsanjani et al., 2015; Reyssat and Mahadevan, 
2009; F. Zhang et al., 2022). These curvature gradient structures give rise to hydration actuated curling plane curve morphologies, 
such as arcs in pine cones and spirals in Selaginella lepidophylla (Fig. 1(a)). However, hydration actuated movement not only occurs in a 
plane but also in spatial dimension. Fiber orientation angle (FOA), as the second one, restricts the deformation direction to generate 
helix curve. Examples include the helix in dehydrated leaves (Fig. 1(a)) and the helicoid in chiral seed pods, Dendrobium helix, and 
Prosthechea cochleata (Armon et al., 2011; Huang et al., 2018). The arc, spiral, helicoid, and helix mentioned before are common 
morphologies in plants, but when we combine these two mechanisms together, we can transcend the existing structures in nature and 
create the more complex morphologies artificially. In 1936, Alan Turing introduced an abstract model, referred to as Turing machine, 
which is capable of manipulating symbols on a ribbon based on a set of predetermined rules (Turing, 1937). This model serves as a 
fundamental theoretical framework for the implementation of various computer algorithms. In classical information theory, symbols 
in Turing machine are typically represented using two distinct states, usually designated as 0 and 1. However, if we extend this concept 
and consider information as the two microstructures inspired from hydration actuated plant tissues in nature, it opens up a myriad of 
fascinating possibilities.

Inspired by the hydration actuation patterns in nature and Turing machine, we develop a multiscale theoretical framework, bio-
mimetic Turing machine (BTM), to encode the microstructures (cm and FOA) of a morphing ribbon for the inverse design of a target 
space curve with both curvature and torsion. Furthermore, based on the BTM theory we inversely design the curved surface with 
positive and negative Gaussian curvatures discretized by space curve as well as tendril in nature successfully. This paper is organized as 
follows. In Section 2, we present the forward problem and solve it by building a multiscale model, consisting of three components. 
Firstly, we build the swelling constitutive for fiber-matrix composites in Section 2.2.1. Secondly, in Section 2.2.2, the relationship 
between principal curvatures of ribbon and swelling strain is derived by minimizing the elastic energy. By transforming the material 
frame to geometry frame, we derive the ribbon morphology with cm and FOA as encoding information in Section 2.2.3. Then a strategy 
for inverse design is proposed in Section 3, consisting of introducing twist field in Section 3.1, the optimization strategy of twist field in 
Section 3.2 and the design criteria of geometry size in Section 3.3. As verifications, examples are given in Section 4. To compare with 
the previous works, we condense the BTM and the previous inverse design strategies for morphing ribbon into a phase diagram in 
Section 5. The perspective and potential applications of BTM are also discussed in this section. Eventually, we conclude this work in 
Section 6.

2. Forward problem and the multiscale model

2.1. Definition of the forward problem

We first define the forward problem. The structure of BTM, as depicted in Fig. 1(a), is a ribbon consisting of bilayer structure 
comprising upper layer and lower layer. Each layer is subdivided into several equally spaced units, which are composed of matrix 
(amorphous matter) and fibers. The widths of fibers and matrix are denoted as dF and dM, respectively, and the matrix volume fraction 
is defined as cm = dM/(dF+dM). The fiber orientations in the upper layer and lower layer are perpendicular to each other. When external 
stimuli applied, the matrix swells perpendicular to the directions (characterized by FOA) of fibers. Accordingly, the center line of 
ribbon morphs to the target space curve by strain mismatch. The morphing process of BTM is similar to the encoding of Turing machine 
as shown in Fig. 1(b). In contrast to the binary information of Turing machine, the input and output of BTM are external stimuli and 
morphology, respectively. Similar to Turing machine, the central aspect of BTM lies on the rules governing the microstructures of the 
ribbon. Therefore, the forward problem is defined as follows: given the volume fraction and FOA of each unit, determine the curvature 
and torsion of the space curve. Correspondingly, the inverse design is to determine the volume fraction and FOA of each unit according 
to target space curve.

2.2. A multiscale model for the forward problem

We build the multiscale theoretical framework to solve the forward problem at first. In order to have a general understanding of the 
geometric structure, the basic unit and morphing process of BTM are shown in Fig. 2. The geometry parameters of each unit are defined 
as follows: length of each unit is l0, the width is w and the thickness is t/2. As stated before, each unit is encoded by matrix volume 
fraction and FOA. Because the fiber orientation in upper layer and lower layer are perpendicular, we define the FOA of upper layer as θ 
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to represent the local FOA of bilayer. To describe the geometry of BTM clearly during morphing process, three frames are defined. The 
global frame, which consists of three axis {i, j, k}, is fixed on the left end of the ribbon and represents the perspective of observer. The 
axis i, j are along the width and length directions of the ribbon before morphing and the k = i × j is perpendicular to the ribbon surface. 
The material frame {d1, d2, N}, which describes intrinsic material properties, is attached to ribbon locally. d2 and d1 are along the 
longitudinal and transverse directions of fibers respectively and the normal vector N is defined as d1 × d2. The geometry frame, ki-
nematic equations of which describe the geometry properties of BTM after morphing, is composed of {E1, E2, N}. E2 and E1 are along 
the length and width directions of each unit respectively. Because {d1, d2} and {E1, E2} are in the same plane, the normal vector of 
upper layer can also be expressed as N = E1 × E2. Note that the global frame is fixed but the geometry frame changes during morphing, 
so the material frame can be viewed as rotating the geometry frame counterclockwise along the N axis with θ.

2.2.1. Swelling constitutive
To elucidate the relationship between material properties and swelling strains, we begin by constructing a micro-mechanical 

swelling constitutive model in fiber-matrix structures. The swelling process observed in fiber-matrix composites bears resemblance 
to the swelling of plant cells. In plant tissues, cellulose nanofibers primarily contribute to the stiffness of cell wall and are immersed 
within an amorphous matrix comprising hemicellulose and lignin (Cosgrove, 2024; Salmen, 2022, 2015; Zhang et al., 2021). Due to the 
crystalline structure, cellulose nanofibers are not susceptible to actuation by hydration (Hou et al., 2021; Xiao et al., 2024). However, 
they play a crucial role in transfer shear stress across the fiber-matrix interface due to high stiffness, which restricts the swelling di-
rection. Consequently, the swelling strain along d1 direction tends to be much larger than d2 direction. To quantitatively characterize 
the swelling process, we develop a swelling constitutive model from the bottom to up. Here, we specify that for simplicity, only the long 
fiber model is selected, while the swelling constitutive of other types of fiber-matrix models is explored in Appendix B. Before building 
the micro-mechanical model of swelling, some assumptions regarding fibers and matrix are listed as follows: (i) The mechanical 
properties of matrix and fibers are isotropic. (ii) The Poisson’s ratio of fibers is too small to be considered. (iii) Only matrix swells but 
fibers cannot. (iv) The swelling strain of matrix η is too small to affect the Young’s modulus. (v) There is no slip on the fiber-matrix 
interface.

We consider the micro-mechanical swelling constitutive model in material frame as illustrated in Fig. 3(a). Considering the periodic 
arrangement of the fiber-matrix structure, representative volume element (RVE) is selected. When the RVE swells, the shear stress on 
fiber-matrix interface tends to compress matrix and stretch fibers along d2 direction (Fig. 3(a)). The constitutive of fiber in d1 and d2 
directions can be expressed as: 

{
σF1 = EFεF1
σF2 = EFεF2

, (1) 

where σF1 and σF2 are stresses of fibers along d1 and d2 directions, respectively and the strains of the fibers are εF1 and εF2. Considering 
the assumptions (i) and (ii), only one elastic constant is needed and the Young’s modulus of fibers is defined as EF. Based on as-
sumptions (iii), the matrix has isotropic swelling strain, so we assume the swelling strain of matrix along d1 and d2 directions is η. 
Considering the swelling strain is small (assumptions (iv)) as well as using the multiplicative decomposition of strain gradient 
(Colorado-Cervantes et al., 2022; Yavari, 2010), we get the constitutive of the matrix: 

Fig. 2. Schematic illustration of morphing process of BTM. The BTM is divided into N units and each unit is encoded by θ and cm. BTM morphs to the 
target space curves after being actuated. Material frame is along the longitudinal and transverse direction of fiber in each unit and the geometry 
frame is attach to each unit.
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⎧
⎪⎪⎨

⎪⎪⎩

σM1 =
EM

1 − ν2 (εM1 − η) + νEM

1 − ν2 (εM2 − η)

σM2 =
νEM

1 − ν2 (εM1 − η) + EM

1 − ν2 (εM2 − η)
, (2) 

where σM1 and σM2 are the stresses of matrix along the d1 and d2 directions, respectively and the strains of the matrix are εM1 and εM2. 
EM is the Young’s modulus of matrix and ν is the Poisson’s ratio. Then we consider the shear stress transfer on the interface and applied 
the assumption (v)). Then the stress and strain relationship between matrix and fibers can be expressed as: 

{
σ2 = cmσM2 + (1 − cm)σF2, σ1 = σF1 = σM1
ε1 = cmεM1 + (1 − cm)εF1, ε2 = εM2 = εM2

, (3) 

where the strains and stresses of the RVE along d1 and d2 directions are ε1, ε2 and σ1, σ2 respectively. Combining Eqs. (1), (2) and (3), 

Fig. 3. The constitutive of upper layer unit in material frame. (a) Schematic illustration of representative volume element (RVE) composed of fiber 
and matrix. (b) (c) Swelling strain ratio of RVE and matrix as a function of matrix volume fraction under different fiber-matrix stiffness ratios in d1 
and d2 axis respectively. (d-e) Elastic modulus of RVE and matrix as functions of matrix volume fraction under different fiber-matrix stiffness ratios 
in d1 and d2 axis respectively.
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we can solve the swelling stress of RVE: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ1 =
EF(cm( − η(ν + 1) + νε2) + ε1)

(1 − ν2)ϕcm + (1 − cm)

σ2 =
EM
( (

c2
m(ϕ(ν + 1) − 1)((ν − 1)ε2ϕ + ε2 − η)

)
+ cm

(
νε1ϕ + ε2

(
(ϕ − 1)2

− ν2ϕ2)) − η
)

cm(1 − ν2)ϕ + (1 − cm)

, (4) 

where ϕ = EF/EM is the modulus ratio of fibers and matrix. When there is no external stress applied, the RVE will be relaxed to a stress- 
free configuration. To solve the swelling strain of stress-free configuration, we set the stresses of RVE equal zero and finally we get: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η1 =
cm + (ν + 1)ϕ(1 − cm)

cm + (1 − cm)ϕ
cmη

η2 =
1

cm + (1 − cm)ϕ
cmη

, (5) 

η1, η2 are the effective swelling strain of the RVE in material frame. Note that the constitutive of RVE can be expressed as: 
(

σ1
σ2

)

= D
(

ε1
ε2

)

, (6) 

where D is the stiffness matrix of RVE. Comparing Eqs. (4) and (6), the stiffness matrix of RVE can be derived: 

D =

(
1 ν0
ν0 1 + δ

)

E, (7) 

where δ is a bias factor, representing the anisotropic properties of RVE. The bias factor, effective Poisson’s ratio ν0 and the effective 
Young’s modulus E of RVE in Eq. (7) can be expressed as: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ = (1 − cm)cm(ϕ(1 − ν) − 1)(ϕ(1 + ν) − 1)/ϕ

E =
EMϕ

cm(ϕ(1 − ν2) − 1) + 1
ν0 = cmν

. (8) 

To elucidate the impact of volume fraction and stiffness ratio on swelling strains and Young’s modulus in the RVE along d1 and d2 
directions, we set ν = 0.3 and depict Eqs. (5) and (7) in Fig. 3(b-e). As the matrix volume fraction increases, the swelling composite 
expands, resulting in a corresponding increase in swelling strains in both directions of the RVE. When the stiffness ratio equals 1, it 
implies that the mechanical properties of the matrix and fiber are nearly identical, except for the Poisson’s ratio (which has a negligible 
impact). As a result, relationship between swelling strains and matrix volume fractions is nearly linear. Typically, due to the crystalline 
structure of fiber, its Young’s modulus is typically much higher than matrix. For instance, the modulus ratio of cellulose nanofibers 
(90–120 GPa) and amorphous matrix (6–8 GPa) in plant cell wall is 10–20. Fig. 3(b-c) demonstrates that as the stiffness ratio increases, 
the swelling strain in the d1 direction increases, while decreasing in d2 direction. This is because the increased restriction in d2 di-
rection of matrix, leading to a decrease of swelling strains. The increase of swelling strains with stiffness ratio increasing in d1 direction 
is attributed to the Poisson’s effect, resulting from the decrease of swelling strains in d2 direction. If there is no Poisson’s effect, Eq. (5)
reduces to η1/η = cm, which is independent of the stiffness ratio ϕ. Fig. 3(d-e) suggest that the Young’s modulus decreases with 
increasing matrix volume fraction, while it increases with the stiffness ratio.

Now, we have established the swelling constitutive of upper layer, as the fiber orientation is perpendicular in both upper layer and 
lower layer. Hence the constitutive of lower layer can be derived similarly. However, how the constitutive of RVE determines the 
principal curvatures of unit remains unclear and will be addressed in next section.

2.2.2. Principal curvatures
Strain mismatch is a fundamental principle underlying the deformation of bilayers since the early 20th century (Timoshenko, 

1925). In the context of BTM, the perpendicular fiber orientation of upper layer and lower layer leads to an orthorhombic swelling. 
Consequently, the strain mismatches in two orthogonal directions are independent. In this section, we construct a model to illustrate 
how swelling affects the principal curvatures of unit by strain mismatch.

We consider this process within material frame. Since the axis of the material frame aligns along the swelling directions, there is no 
shear strain for both the upper and lower layers. Therefore the energy per unit area, without considering shearing in the material 
frame, can be expressed as: 

U =
1
2

∫ t/2

0
(εa − ηa)

tDa(εa − ηa)dz +
1
2

∫ 0

− t/2
(εb − ηb)

tDb(εb − ηb)dz, (9) 

where εa, εb are the elastic strain, ηa, ηb are the effective swelling strains vectors, Da, Db are the stiffness matrix for upper and lower 
layers, z is the coordination along N. Using the Kirchhoff-Love hypothesis, the elastic strain is expressed as: 
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εa = εb =

(
ε1

ε2

)

+ z

(
κ1

κ2

)

. (10) 

Considering the fiber orientations are perpendicular in upper and down layers, the swelling strains and stiffness matrix can be 
expressed as: 

⎧
⎪⎨

⎪⎩

ηa =

(
η1

η2

)

, ηb =

(
η2

η1

)

Da =

(
1 ν0

ν0 1 + δ

)

E,Db =

(
1 + δ ν0

ν0 1

)

E

, (11) 

simplify Eq. (9), we get: 

U =
t3E
24

((
1 − ν +

δ
2

)
tr
(
κ2)+ νtr2(κ)

)

+
tE
2

(

(1 − ν)tr(ε − η)2
+ νtr2(ε − η) + (1 − ν)

2
(η2 − η1)

2
+
(
(ε2 − η2)

2
+ (ε1 − η2)

2) δ
2

)

+
t2E
8

((η2 − η1)(κ1 − κ2)(1 − ν) + ((ε2 − η2)κ2 − (ε1 − η2)κ1)δ)

, (12) 

where tr(⋅) donates the trace of a second-order tensor, κ is the curvature tensor, ε is the real strain and η is the mean swelling tensor. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ =

(
κ1 0

0 κ2

)

ε =

(
ε1 0

0 ε2

)

η =

⎛

⎜
⎝

η1 + η2

2
0

0
η1 + η2

2

⎞

⎟
⎠

(13) 

It is obvious that if the swelling is isotropic and the mechanical properties is isotropic by setting δ = 0 and η0 = η1 = η2, we can get a 
degenerated energy form similar to the non-Euclidean plate proposed by (Armon et al., 2011; Klein et al., 2007). 

U =
Et3

24
(
(1 − ν)tr

(
κ2)+ νtr2(κ)

)
+

Et
2
(
(1 − ν)tr(ε − η)2

+ νtr2(ε − η)
)

(14) 

We minimize the energy per unit area by setting the variation of Eq. (12) equal zero: 

δU
δε1

=
δU
δε2

= 0;
δU
δκ1

=
δU
δκ2

= 0. (15) 

Finally, we get the strain and principal curvatures: 

Fig. 4. Dimensionless principal curvature (a) and strain (b) as functions of matrix volume fraction under different fiber-matrix stiffness ratios.
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ε1 = ε2 =
2cmη

(
δ2 + 8 − 8c2

mν2 + δ(9 − cmν) + (cm + ϕ(1 − cm)(1 + ν))
(
8
(
1 − c2

mν2
)
+ δ(cmν + 7)

))

(
δ2 + 16

(
1 + δ − c2

mν2
))
(cm + ϕ(1 − cm))

, (16) 

κ2 = − κ1 =
48(1 − cm)

(
1 + δ − c2

mν2
)
(ϕ(ν + 1) − 1)cmη

t
(
δ2 + 16

(
1 + δ − c2

mν2
))
(cm + ϕ(1 − cm))

, (17) 

when ϕ = 1, ν = 0, cm = 0.5, δ = 0, Eq. (17) degenerates to the classical equation of curvature of bi-mental (κ = 3η/2t) given by 
(Timoshenko, 1925).

To elucidate the impact of the stiffness ratio and volume fraction on curvature and strain, we depict the dimensionless principal 
curvature κt/η and dimensionless strain ε/η in Fig. 4(a-b). When the volume fraction of the matrix is zero, it implies no swelling, thus 
both the principal curvature and strain are zero. As the matrix volume fraction increases, the κt/η initially rises, then declines to zero. 
This phenomenon is attributable to the fact that when the matrix volume fraction is minimal, increase in matrix volume fraction leads 
to increasing of swelling strain, thus augmenting the principal curvature. Nonetheless, as the volume fraction trend approaches unity, 
the orthogonal anisotropy of the composite gradually diminishes. This results in the swelling strain no longer being constrained 
orthogonally, thereby causing a decline of κt/η to zero. When the stiffness ratio increases, the restraining effect of the fiber is enhanced. 
Consequently, κt/η tends to increase and the strain diminishes. Note that κt/η is determined by the volume fraction uniquely according 
to the curve preceding the maximum point as depicted in Fig. 4(a). Therefore, we can solve the volume fraction inversely with the 
principal curvatures of the ribbon for the target space curve.

We have established a correlation between volume fraction and principal curvatures within material frame. Nevertheless, to solve 
the forward problem, θ, which determines the directions of principal curvatures, is also needed to be considered. We will determine the 
curvature and torsion of center line of BTM according to cm and θ of each unit in subsequent section.

2.2.3. Morphology of BTM
To derive the morphology of BTM, we start to consider the center line in material frame, the motion equation of the material frame 

along the center line can be written as (Chen et al., 2011): 

d́ = Γ(θ)d

Γ(θ) =

⎛

⎜
⎜
⎝

0 0 − κ1sinθ

0 0 − κ2cosθ

κ1sinθ κ2cosθ 0

⎞

⎟
⎟
⎠

, (18) 

where (⋅)` donates d(⋅)/ds, d={d1, d2, N}t and (⋅)t represents the transpose of vector or matrix. Note that the material frame can be 
derived by rotating the geometry frame counterclockwise with angle θ along N as mentioned in Section 2: 

d = RE

R =

⎛

⎜
⎜
⎝

cosθ sinθ 0

− sinθ cosθ 0

0 0 1

⎞

⎟
⎟
⎠

, (19) 

where E={E1, E2, N}t .Combining Eqs. (18) and (19), we can derive the kinematic equation of geometry frame: 

E’ = ΛE

Λ = (Rt’ + RtΓ)R =

⎛

⎜
⎜
⎝

0 − θ’ (κ2 − κ1)sinθcosθ

θ’ 0 − κ1sin2θ − κ2cos2θ

(κ1 − κ2)sinθcosθ κ1sin2θ + κ2cos2θ 0

⎞

⎟
⎟
⎠

. (20) 

In consideration of Eq. (17), we set κ1=-κ2, then Eq. (20) is simplified as: 

Λ =

⎛

⎝
0 − θ́ − κ1sin2θ
θ́ 0 κ1cos2θ

κ1sin2θ − κ1cos2θ 0

⎞

⎠. (21) 

The tangent vector E2 can be expressed by the derivative of position r(s): 

ŕ = E2. (22) 

Note that the principal curvatures determined by cm has been discussed formerly (Eq. (17), Fig. 4(a)), hence when cm and θ are 
given as functions of arc length parameter s, Eqs. (20) and (21) as kinematic equations of the geometry frame can be solved directly and 
then the morphology of BTM can be derived by integrating Eq. (22). Eventually the forward problem is solved from bottom (cm and θ) 
to up (morphology of BTM) with the multiscale model successfully.

To compare with the former studies, here a special case is considered. When we set θ as constant, Eq. (21) degenerates to: 
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Λ =

⎛

⎝
0 0 − κ1sin2θ
0 0 κ1cos2θ

κ1sin2θ − κ1cos2θ 0

⎞

⎠. (23) 

Note that {E1, E2,N} are the binormal vector, tangent vector and normal vector, Eq. (23) describe a space curve, whose curvature κ 
= κ1cos2θ and torsion τ = κ1sin2θ. Here, we examine two straightforward examples: plane curve and helix, to which most of the 
actuator design reported in previous studies can be attributed (Chen et al., 2012; Ha et al., 2020; Kuang et al., 2019).

We consider θ is 0 or π/2 and κ1 as function of arc length parameter s, the torsion is zero and curvature is ±κ1. Eq. (23) degenerates 
to Frenet frame of plane curve. This instance is commonly employed to morph the circumferentially discrete part of revolved surface 
(Cheng et al., 2023; Kansara et al., 2023; Yang et al., 2023a; Zhang, 2022). Note that for many materials, it is nearly impossible to 
realize the shrinkage and swelling at the same time, which means we cannot morph a plane curve with both positive and negative 
curvatures (Ha et al., 2020; Kuang et al., 2019). However, in BTM theory we can morph a plane curve with both positive and negative 
curvatures by adjusting θ equals to 0 or π /2 as demonstrated in clover example as follows.

Considering both θ and κ1 are constants, the torsion divided by curvature is constant (Eq. (24)), which is the definition of general 
helix (Abbena et al., 2006). 

τ
κ
= tan2θ = const. (24) 

The pitch p, radius R and helix angle ψ are given by Eq. (25). 

p =
2π
κ1

sinψ ,R =
cosψ

κ1
,ψ = − 2θ (25) 

A special case is when κ is vanishing but τ is not, considering Eq. (24) tan2θ must be infinite. Therefore, when θ = π/4, pitch is zero 
and the morphing shape is helicoid (Armon et al., 2011; Chen et al., 2011). The general helix case can be solved analytically, we 
assume the point on the ribbon r can be parameterized with {s, t}, t is the distance parameter along the short edge. We solve the center 
line of the ribbon at first with the boundary condition Eq. (26): 

E(0,0) = {i, j,k}, r(0,0) = 0. (26) 

Combining Eqs. (22), (23) and (26), we can solve the parametric equations of center line. The Frenet frame along the short edge 
direction of the ribbon can be written as: 

ṙ(s, t) = E1(s, t), (27) 

ḋ = Γ(θ+ π /2)d, (28) 

where ( ⋅ ) donates d(⋅)/dt. The solution of center line {r(s,0), E1(s,0), E2(s,0), N(s,0)} can serve as the initial value of Eqs. (27) and (28). 
Finally, the general helix shape can be solved analytically as: 

r(s, t) = X(s, t)i + Y(s, t)j + Z(s, t)k
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(s, t) = ssinψ +
t(cosψ − cos3ψ)

2
+

sinγtcosψcos2ψ
γ

Y(s, t) =
cosψsinγscosγt

γ
−

2sinψcos2ψcosγssinγt
γ

+ tsinψcos2ψcosγs

Z(s, t) =
cosψ(cosγscosγt − 1)

γ
+

2sinψcos2ψsinγssinγt
γ

− tsinψcos2ψsinγs

. (29) 

For general case, when θ and cm are given as functions of s, we can derive the morphology of center line of BTM by solving Eqs. (17), 
(21) and (22). However, for a specific curve, there is still unclear to design the cm and θ of each unit inversely. Therefore, in subsequent 
section we will post a method to design the cm and θ of each unit inversely according to the target space curve as center line of BTM.

3. Inverse design

Shape inverse design is defined as morphing to a target shape under external stimuli by controlling the microstructure. To the best 
of our knowledge, although significant experimental and theoretical efforts have been made to design and fabricate numerous ac-
tuators, the morphing shapes of ribbon are restricted to three types (arc, helix, and helicoid) and realizing inverse design for complex 
target shape of space curve is still a challenge. We build a theory for inverse design as follows.

3.1. Inverse design by introducing a twist field

Before considering the target center line, we note that all elements in the upper triangle part of Eq. (21) for the geometry frame 
exhibit non-zero values. This is because BTM is a ribbon structure and an extra parameter is required to determine the normal direction 
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N. However, when we consider a target space curve framed by Frenet frame, a notable observation emerges: only two parameters 
(curvature and torsion) are needed to frame a curve. This means we cannot achieve the inverse design by equating the geometry frame 
of BTM and the Frenet frame of target space curve directly.

To solve this problem, we note that the application of a twist field along the tangent vector of the center line of a ribbon has no 
influence on the shape of center line. Instead, it merely alters the orientations of the normal vector and binormal vector, as illustrated 
in Fig. 5(a). In other words, there is no more way to frame a curve (Bishop, 1975). Consequently, for a target space curve, arbitrary 
twist field is available to be applied along the tangent vector. Drawing upon this principle, a twist field φ(s) is introduced along the 
tangent vector of target curve, which is unknown to be solved. We assume the kinematic equation of Frenet frame of target curve is: 

d
ds

⎛

⎝
B
T
N0

⎞

⎠ =

⎛

⎝
0 0 − τ
0 0 κ
τ − κ 0

⎞

⎠

⎛

⎝
B
T
N0

⎞

⎠, (30) 

where the T, N0 and B represent the tangent vector, normal vector, and binormal vector of target curve, respectively, while κ and τ 
denote the curvature and torsion. Introducing a twist field φ(s) along T, the rotational relationship can be expressed as: 

⎛

⎝
B1
T
N1

⎞

⎠ =

⎛

⎝
cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎞

⎠

⎛

⎝
B
T
N

⎞

⎠, (31) 

where N1 and B1 are the normal vector and binormal vector after twist. Combining Eqs. (30) and (31), the kinematic equation after 
twist field applied can be derived as: 

d
ds

⎛

⎝
B1
T
N1

⎞

⎠ = Λ1

⎛

⎝
B1
T
N1

⎞

⎠, (32) 

Λ1 =

⎛

⎝
0 − κsinφ φs − τ

κsinφ 0 κcosφ
τ − φs − κcosφ 0

⎞

⎠. (33) 

Comparing Eqs. (21) and (33), a set of equations are given to build the bridge between the geometry parameters of target curve 
{κ(s), τ(s)} and the materials properties θ(s), the principal curvature κ1 (determined by volume fraction), as well as the twist field φ(s): 

Fig. 5. Schematic illustration of (a) the target space curve before and after twist field applied and (b) the frame transformation of BTM.

J. Li et al.                                                                                                                                                                                                                Journal of the Mechanics and Physics of Solids 196 (2025) 105999 

10 



{
θ́ = κsinφ
φ́ = τ − κtan2θcosφ , (34) 

κ1 =
κcosφ
cos2θ

. (35) 

We note that Eq. (34) is an initial value problem of ordinary differential equations, which can be solved directly with θ0 and φ0 as 
initial values are given. After Eq. (34) is solved, Eq. (35) can be integrated directly and volume fraction cm(s) can be solved inversely by 
Eq. (17). Eventually, cm(s) and θ(s) as functions of arc length parameter s can be solved for given {κ(s), τ(s)} of target curve.

We summarize the multiscale theoretical framework for inverse design in Fig. 5(b). We firstly derive the constitutive of swelling 
(Eq. (5)) and the principal curvatures of each unit (Eq. (17)). Then the forward problem is solved by rotating the material frame 
(represent the materials properties) with θ along normal vector N to derive the geometry frame (represents the ribbon morphology) 
using Eqs. (21) and (22). Eventually, inverse design is achieved by introducing a twist field along the tangent vector to connect the 
target curve and ribbon morphology (Eqs. (34) and (35)).

3.2. The optimization of twist field

As mentioned in Section 3.1, the twist field φ(s) for a specific space curve is not unique, as illustrated in Fig. 5(a). Therefore, 
determining the "best" twist field becomes a critical consideration. Note that for forward problem only the kinematic equation of 
geometry frame Eq. (20) and (21) needs to be solved, which means when the θ(s) and cm(s) are given, the ribbon morphology is unique. 
However, the solution is not unique for the inverse design problem. We notice that when κ(s) and τ(s) are known, the solution of Eq. 
(34) is determined by the initial values of θ and φ. Therefore, the initial values of θ and φ are critical for inverse design and we will give 
a strategy for deriving the appropriate initial conditions of Eq. (34) based on the minimization of errors from discrete units as follows.

Before delving into the selection of initial conditions, we recall that the ribbon is discretized by many units and we approximate the 
solution of Eqs. (17), (34) and (35) with the cm and θ discretely in each unit. Therefore, two intuitive problems are necessary to be 
addressed. Firstly, as illustrated in Fig. 6(a), a significant difference in θ between two adjacent encoding units lead to interfacial 
mismatch during morphing. Secondly, when dealing with a solution of θ that undergoes drastic changes, a greater number of encoding 
units are required to discretize it to maintain controlled error, as demonstrated in Fig. 6(b) Case A. Conversely, for solutions of θ that 
change more gradually, fewer encoding units are necessary, as depicted in Fig. 6(b) Case B. To effectively mitigate the errors resulting 
from these two issues, we define a loss function Uθ as 

Uθ =

∫ s0

0
θ́ 2ds. (36) 

Then, our objective is to determine the suitable boundary conditions {θ(0), φ(0)} that minimize the loss function Uθ. Therefore, an 
optimization problem can be posed as: 

Fig. 6. The optimal design of interfacial mismatch. (a) The schematic illustration of the interfacial mismatch between different units of BTM. (b) 
Two cases with different relationships of curve and interfacial mismatch. Large and small interfacial mismatch for case A and case B respectively.
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min
{θ0 ,φ0}

Uθ(θ0,φ0) =

∫ s0

0
θ́ 2ds

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ́ = κsinφ
φ́ = τ − κtan2θcosφ
θ(0) = θ0

φ(0) = φ0

θ0 ∈ [ − π/4, π/4),φ0 ∈ [− π, π)

. (37) 

It is worth noting that there are two alternative kinds of loss functions based on different considerations. The first one is based on 
the consideration of interfacial mismatch as shown in Eq. (37). However, because of the small swelling strain η as stated in Section 
2.2.1 (assumptions (iv)), the principal curvature κ1 cannot be very large, therefore we can define the second kind of loss function as the 
integration of κ1

2+θ’2 as detailed in Appendix C. These two kinds of loss functions give the similar results as shown in the following 
example (Appendix C and Fig. 11(b)), because the interfacial mismatch is the core factor that determines whether inverse design can be 
achieved. Thus, here we select the integration of θ’2 as the loss function.

Before solving the Eq. (37) numerically, we notice that the large twist field of a ribbon leads to the morphology transformation from 
helicoid to helix and the complex nonlinear mechanical behavior (Armon et al., 2014, 2011; Gomez et al., 2023; Grossman et al., 
2016). Therefore, we analyze the stability of Eq. (34) qualitatively to control the increase of φ(s). Note that the eigenvalues of Jacobi 
near the fixed points characterize the stability of ordinary differential equations, when the real parts of the eigenvalues are negative the 
solution is stable (Datseris and Parlitz, 2022). Without loss of generality, we consider the curvature and torsion of target curve is near 
zero at the beginning point (arc length parameter s = 0), because for arbitrary target space curve we can splice a small arc (with small 
curvature) at the beginning point. Therefore, θ0 and φ0 can serve as fixed points of Eq. (34), which leads θ` = κsinφ0 = 0, φ` =
τ-κtan2θ0cosφ0 = 0. To prevent the increase of φ(s), we limit the real part of eigenvalues less than zero for θ0 and φ0.The Jacobi of Eq. 
(34) is expressed as: 

(
0 κcosφ

− 2κsec22θcosφ κsinφtan2θ

)

. (38) 

The eigenvalues of Eq. (38): 

{ κsec22θsinθcosθcos2θsinφ
(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 8cot2φcsc22θ
√ )

κsec22θsinθcosθcos2θsinφ
(

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 8cot2φcsc22θ
√ ) . (39) 

We should choose the optimal solution to meet that the real part of Eq. (39) is negative to control the increase of twist field. Note 
that the curvature in Frenet frame is always positive, so the sign of the real part of Eq. (39) is determined by λ1 and λ2. 

{ λ1 = sinθcosθcos2θsinφ
(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 8cot2φcsc22θ
√ )

λ2 = sinθcosθcos2θsinφ
(

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 8cot2φcsc22θ
√ ) . (40) 

The contour map of the Eq. (40) is shown in Fig. 7. It is obvious that when θ0 and φ0 have the opposite signs, the real parts of 
eigenvalues are negative and the increase of twist field is controlled.

Fig. 7. The contour map of Eq. (40). The color represents the value of eigenvalues, red represents positive and blue represents negative. (a) The 
reduced first eigenvalue λ1. (b) The reduced second eigenvalue λ2.
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3.3. The design criteria of geometry size

To give guidelines for the manufacture of BTM experimentally, the design criteria of geometry size, encompassing parameters such 
as length, width, and thickness, is necessary to control the error. It is crucial to always remember that Eqs. (5) and (17) are only 
applicable to cases with small strains and small thicknesses. When the strain is significant, the specific geometry boundary of the 
ribbon will result in the nonlinear relationship between swelling strain and the principal curvature, which brings the difficulties for 
inverse design (Liu et al., 2023, 2019). The design criteria are also closely intertwined with the specific shape of the target curve. 
Intuitively, if a target curve exhibits significant curvature, we require more units to encode. Therefore, evaluating the minimal number 
of units required according to the curvature of target curve is also necessary.

Assume that the maximum bending angle of an unit is ϑmax and the local curvature of the unit can be written as ϑmax/l0. So 
combining Eq. (17), we can write: 

κ2 = f(cm, δ, ν)
η
t
=

ϑmax

l0
, (41) 

where f(cm, δ, ν) is a dimensionless principal curvature plotted in Fig. 4(a). Hence the length thickness ratio of the unit can be written 
as: 

t
l0
=

f(cm, δ, ν)η
ϑmax

. (42) 

Linear relationship is only valid when η < 3% (Liu et al., 2019), if we assume the maximum bending angle of an unit is π, the 
thickness length ratio should be restricted as: 

l0
t
>

100π
3f(cm, δ, ν). (43) 

We set ν = 0.3, and the result is shown in Fig. 8(a). As the stiffness ratio increases, the anisotropy of the material also increases, 
resulting in a smaller length-thickness ratio being available. It is important to note that there is a minimum point of the length- 
thickness ratio for a specific volume fraction. This represents the limitation of the length-thickness ratio under the specific stiffness 
ratio. If the length thickness ratio is less than this value, the geometry boundary will bring error for morphing morphology.

Similar to the length thickness ratio, the width thickness ratio also influences the morphology of BTM. Consider a special case only 
with twist field, when θ equals π/4, the morphing shape is helicoid. When the dimensionless width w/t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ηf(cm, δ, ν)

√
increases, the 

helicoid transforms to transforms into helix. It has been investigated by form studies that the critical value of dimensionless width is 
about 3 (Armon et al., 2014, 2011; Grossman et al., 2016; Hall et al., 2023). To prevent morphological transformation, we have: 

w
t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ηf(cm, δ, ν)

√
< 3. (44) 

Consequently, width thickness ratio should be restricted as: 

w
t
<

3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ηf(cm, δ, ν)

√ . (45) 

We set ν = 0.3, Eq. (45) is shown in Fig. 8(b). Similar to the length thickness ratio, there is also a minimal point for a specific volume 
fraction. It means the width thickness ratio should be smaller than this point at least.

We examine a curve, whose length is s0, and the maximum curvature is κm. The actual length of the ribbon in manufactory is L, with 

Fig. 8. The design criteria for geometry size. (a) The minimal length-thickness ratio as a function of matrix volume fraction under different fiber- 
matrix stiffness ratios. (b) The maximal width-thickness ratio as a function of matrix volume fraction under different fiber-matrix stiffness ratios. The 
dashed line is the minimal point of the length-thickness ratio and width-thickness ratio.
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N encoding units. Consequently, the length of each unit is l0 = L/N. To ensure that the maximum curvature of each unit can attain the 
actual maximum curvature in the target shape of the ribbon κm s0/(N l0), we have: 

κ0 = f(cm, δ, ν)
η
t
=

κms0

Nl0
. (46) 

The number of units N reads: 

N =
1

ηf(cm, δ, ν)
t
l0

κms0, (47) 

Eq. (47) shows that for the target curve with larger curvature or longer length, more units are needed to discretize it, which is 
consistent with our qualitative understanding.

4. Examples and verifications

Based on the multiscale theoretical framework that has been formulated for the inverse design, now we consider some examples to 
verify our theory. In this section, we consider plane curves, including cardioid and clover at first and further examples, such as curved 
surfaces with positive and negative Gaussian curvatures discretized by space curve as well as tendril in nature, are designed inversely 
based on BTM theory. Note that although new methods are developed recently to design the plane curves inversely, such as machine 
learning (Sun et al., 2024, 2022) and discrete elastic rod (Qin et al., 2022), the inverse design of space curve is still far from being 
properly investigated. Examples are displayed as follows.

4.1. Examples of plane curves

As shown in Fig. 9(b), the first case is the cardioid, which can be expressed with Eq. (48): 

x = (1 − cos(2πt))sin(2πt), y = (1 − cos(2πt))cos(2πt) t ∈ [0,1). (48) 

The signed curvature of plane curve is defined as: 

κ =
x́ (t)yʹ́ (t) − ý (t)xʹ́ (t)

(x́ (t) + ý (t))3/2 , (49) 

where (⋅)` donates d(⋅)/dt and (⋅)`` donates d2(⋅)/dt2. By solving Eqs. (34) and (35), we can get the cm and θ as function of arc length 
parameter as shown in Fig. 9(a). The curvature at (x(0), y(0)) points in infinite, so we just consider t ∈ [0.05,0.95]. The volume fraction 
is scaled by the maximum value (0.852) here and in later cases. Then we perform 100 units in FEA as shown in Fig. 9(c), it is obvious 
that the maximum point of strain has the maximum curvature at (x(0.05), y(0.05)) and (x(0.95),y(0.95)) and it is almost the same as 

Fig. 9. The inverse design of 2D curves. (a) FOA and volume fraction for cardioid (b) the target cardioid (c) the FEA results of cardioid; (d) the FOA 
and volume fraction for clover curve (e) the target clover curve (f) the FEA results of clover curve.
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the target shape in Fig. 9(b).
As stated in Section 2.2.3, we can morph a plane curve with both positive and negative curvatures by adjusting θ as 0 or π/2. So we 

choose the second case: the clover curve as shown in Fig. 9(e), which has both the positive and negative curvatures. The cm and θ is 
shown in Fig. 9(d). The clover curve is composed of three arcs with 120 degrees center angle and three arcs with 240 degrees center 
angle, the binormal direction of which are the opposite of the previous ones. Therefore θ has a form similar to square waves. Owing to 
the same curvature of the six arcs, the volume fraction is the constant. The FEA result shows in Fig. 9(f) verifies our theory.

4.2. Examples of the curve-discretized surfaces

Inverse design of a curved surface morphing from a plane has caused great interests of both experimental and theoretical scientists 
during past ten years (Aharoni et al., 2018; Boley et al., 2019; Siéfert et al., 2019; Sydney Gladman et al., 2016; van Rees et al., 2017; 
Yang et al., 2023b). As stated by Theorema Egregium, the Gaussian curvature is uniquely determined by the first fundamental form of a 
surface. Therefore, substantial stretch in plane occurs when morphing from a plate (with zero Gaussian curvature) to a curved surface 
(with non-zero Gaussian curvature). The substantial stretch poses two significant challenges both in theory and experiments. 
Generating significant intrinsic strain experimentally to achieve substantial in-plane stretch is indeed challenging using conventional 
methods like swelling or heating. These methods typically cannot induce enough strain to cause substantial stretch in plane. Inflation, 
on the other hand, has been used successfully to achieve large in-plane stretches. When rubber materials undergo large strains, they 
usually exhibit hyper-elastic behavior, which differs significantly from the behavior predicted by linear elastic models. Consequently, a 
hyper-elastic constitutive model, rather than a linear elastic one, is required to accurately describe the deformation behavior of the 
material, the formula of which is too complex to guide experiments. Relevant theoretical work has recently been carried out by 
Ciarletta et al. (Ciarletta et al., 2022). How to achieve inverse design of a curved surface with large Gaussian curvature is still a 
challenging problem.

By using BTM theory and discretizing the curved surface with space curve, we can morphing the surface with large Gaussian 
curvature from a plate ribbon (Video S1 and S2). As shown in Fig. 10(c) and (g), two representative curved surfaces, the hyperboloid 
and hemisphere, with negative and positive Gaussian curvatures are selected. The space curve in Eqs. (50) and (51) are used to dis-
cretize the hyperboloid and hemisphere as the objective shown in Fig. 10(c) and (g). 

⎧
⎪⎪⎨

⎪⎪⎩

x =
(
6
(
t2 − t

)
+ 3
)
cos(20πt)

y =
(
6
(
t2 − t

)
+ 3
)
sin(20πt)

z = 5t

t ∈ [0,1) (50) 

⎧
⎨

⎩

x = cos(30πt)sin(πt)
y = sin(30πt)sin(πt)
z = cos(πt)

t ∈ [0.05,0.5] (51) 

The detail of discretization is shown in Appendix D. Combining Eq. (34), boundary condition {θ0 = 0, φ0 = 0}, and the curvature 
and torsion calculated by Eq. (S14), we can solve the twist field, cm and θ as shown in Fig. 10(a-b) and (e-f).

It is obvious that in Fig. 10(b), the maximum point of volume fraction is in the middle, which is consistent with the geometric 
intuition (the curvature is the maximum in the middle of the hyperboloid). FEA results in Fig. 10(d) show that the maximum strain lies 
on the middle of the hyperboloid, on which the point with maximum curvature lies. This is consistent with the positive correlation 
between strain and curvature shown in Fig. 10(a-b). For the hemisphere shown in Fig. 10(g), the maximum point of volume fraction 
lies at the initial points, which is the maximum point of the curvature. Similar FEA result is shown in Fig. 10(h). Note that both for the 
hyperboloid and hemisphere, we choose the boundary condition {θ0 = 0, φ0 = 0} and the twist field is very small (Fig. 10(a) and (e)). 
However, when the target space curve is more complex, the twist field is large and the theory in small strain case cannot predict the 
ribbon shape after morphing. Under this situation, we need to optimize the θ0 and φ0 as discussed in Section 3.2. As an instance, a large 
twist field is needed for inverse design of tendril. In next section, we will design the tendril inversely by optimization.

4.3. Tendril

We illustrate the process of optimal design using the morphology of tendril as an instance shown in Fig. 11(a). The tendril is 
composed of two parts, the straight line part and the space curve part as shown in the Appendix E. The straight line part is trivial and 
can be designed by the ribbon without morphing, so we consider the part of the space curve part.

To solve the optimization problem Eq. (37), we scan the initial value θ0 from -π/4 to π/4 and φ0 from -π to π and construct the 
landscape of the loss function Eq. (36) as shown in Fig. 11(b). We selected three solutions for analysis: two with minimal loss values 
(points 1 and 2) and one with a maximal loss value (point 3) for contrast. As illustrated in Fig. 11(a), the local twist, indicated by the 
gray circle, is significantly larger than that in the red circle. This suggests that the solution corresponding to point 3 exhibits a pro-
nounced twist, leading to a tendency toward bulking and deviation from the target morphology. To quantitatively assess the opti-
mization results, the corresponding φ, θ, and θ’ values for points 1, 2, and 3 as functions of unit number are presented in Fig. 11(c-e). It 
is evident that the twist field at point 3 increases markedly, reaching a value of 8.0, whereas the twist field at point 1 fluctuates between 
− 0.8 and 0.45 (Fig. 11(c)). Additionally, the θ and θ’ values at point 3 are larger than those at points 1 and 2 (Fig. 11(d-e)), indicating 
that the optimized points 1 and 2 are more stable. This behavior can be explained by the earlier eigenvalue analysis: point 1 is situated 
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Fig. 10. The inverse design of 3D surface. The twist field, volume fraction and FOA as a function of number of units for the hyperboloid of revolved surface (a-b) and the hemisphere surface (e-f) 
respectively. The target shape and FEA results for hyperboloid of revolved surface (c-d) and the hemisphere surface (g-h).
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in the negative (blue) region, while point 3 is located in the positive (red) region, as shown in Fig. 7. Although both points 1 and 2 
represent minimal loss solutions, it is noteworthy that they exhibit chiral symmetry (Fig. 11(a)), similar to the helix case. Conse-
quently, to achieve the same chirality as observed in natural tendrils (Fig. 11(a)), we select solution point 1 as the optimal choice.

Indeed, only with the solution from point 1 instead of point 3, the ribbon can successfully morph to the target tendril morphology 
according to FEA results (Video S3). The optimization and FEA results are summarized in Fig. 12. The optimal solution (point 1) is 
consistent with our geometric intuition: there are two maximal points in Fig. 12(a-b), which correspond to the twice twists of the 
tendril. To quantify the error of this case, we calculate the error along x, y and z axis in Fig. 12(d) by Eq. (52): 

Fig. 11. The inverse design of tendril. (a) The primary tendril and the tendril morphologies inversely solved by BTM theory at point 1(red), point 2 
(blue) and point 3(gray). (b) The landscape of integrate value of θ’2 as loss function versus (θ0, φ0), the points 1, 2 are the minimal points and point 3 
is the maximal point, respectively. (c-e) The optimal results of twist field, FOA and θ’ as functions of number of units at points 1, 2 and 3.
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ex =
xFEA − xscanned

xscanned
; ey =

yFEA − yscanned

yscanned

ez =
zFEA − zscanned

zscanned
; e =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2
x + e2

y + e2
z

√ , (52) 

where xFEA, yFEA, zFEA are the coordinates in FEA results, xscanned, yscanned, zscanned are the coordinates in target scanned model and ex, ey, 
ez, e are the errors along x, y, z axis respectively and the L^2 norm of them. As shown in Fig. 12(d), we control the error within plus or 
minus 5% by our optimization strategy and the FEA result is coincident with the scanned model (Fig. 12(d)).

Fig. 12. The optimization and FEA results of tendril. (a-b) The twist field, FOA and cm as functions of number of units at point 1. (c) The scanned 
tendril model (gray line) and FEA results (green circle). (d) The error between FEA results and the scanned tendril model.

Fig. 13. The phase diagram for morphing ribbon. (a) The phase diagram of previous morphologies and tendril. The gray line represent the gradient 
curvature for plane curves. The gray, pink and orange points represents the arc, helix and helicoid morphologies, respectively. The green curve 
represents the inverse design of tendril. (b) The phase diagram for curve-discretized hemisphere surface and hyperboloid of revolved surface. The 
blue and red lines represent the hemisphere surface and hyperboloid of revolved surface, respectively.
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During the optimization, we notice that the initial value of θ is about 0.55, which is near 1/2arctan(τ(0)/κ(0)), it a solution of Eq. 
(24). It means the microstructure of the initial point like helix is near the minimal point. Usually for a general space curve, scanning the 
full field of θ0 and φ0 is expensive for computing resource. Therefore, we can choose a cheaper strategy: minimize the loss function Uθ 
near θ0 = 0.5·arctan(τ(0)/κ(0)) and a random φ0 or a compromise one: only fix θ0 = 0.5·arctan(τ(0)/κ(0)) and scan φ0 from -π to π. In 
summary, BTM theory can achieve the inverse design of the target space curves with both curvature and torsion, such as curve- 
discretized surfaces and creatures with slender structures in nature, effectively.

5. Discussion of the phase diagram for morphing ribbon

Fig. 13 presents a comparison between BTM and previous works, where the morphology of each morphing ribbon is represented as 
a trajectory in the parametric space of cm (matrix volume fraction) and θ (fiber orientation angle). To the best of our knowledge, most 
previous studies on the inverse design of morphing ribbons fall into two categories. The first category consists of plane curves with 
graded curvature (gray lines in Fig. 13(a)), which can be fabricated with graded stiffness strategy and has been used to design the 
circumferentially discrete part of the revolved surface (Liu et al., 2020; Sun et al., 2024; Yang et al., 2023a; Zhang, 2022). The second 
category includes space curves with constant curvature and torsion, such as the arc, helicoid and helix (gray, orange and pink dots in 
Fig. 13(a)), which can be achieved by using constant cm and θ (Armon et al., 2011; Chen et al., 2011, 2012; Yue et al., 2023). We notice 
that the two categories correspond to the two kinds of morphologies of hydration actuated plant tissues as discussed in Section 1. 
However, BTM theory is not limited to imitate the existing morphologies, but combines the microstructural regulation mechanisms 
behind them to achieve reverse design of more complex morphologies. In essence, we not only learn from nature, but also transcend 
nature. As one of the advantages of the BTM theory, we overcome the restriction by Theorema Egregium and achieve the morphing of 
surfaces with large positive and negative Gaussian curvature through discretized curves: hemisphere surface (blue curve in Fig. 13(b)) 
and hyperboloid of revolved surface (red curve in Fig. 13(b)), which are difficult to be achieved by a morphing plate with relatively low 
actuation strain. We also imitate the tendril’s morphology in nature (green curve in Fig. 13(a)) using BTM. Owing to its capability of 
designing the curvature and torsion of space curves, BTM is promising to design the metamaterials with more complex 3D shape 
morphing in the future beyond that of 2D lattice materials (Sun et al., 2024).

Some other perspectives of BTM are stated as follows. Firstly, the length of discrete units in this work is uniform, which is not 
necessary and may be improved. For example, adaptive unit length may be used for regions with different curvatures, such as using 
small-length units for large-curvature part and large-length units for small-curvature part, which would make the fabrication easier. 
Such non-uniform design strategies will be further investigated. Secondly, when the ribbon has magnetic, electrical or optical prop-
erties, BTM has potential to regulate the physical field by the target geometric morphology, which is more promising compared with 
traditional strain engineering (B. Li et al., 2024; J. Li et al., 2024; Yang et al., 2024; Zhu et al., 2015). Lastly, not only limited to the 
residual strain by external stimuli, Eqs. (34) and (35) are the general principle for inverse design of target space curve and they can be 
used in many other fields such as the geometric design of the robotic gripper with tendon actuated, architectural structures (Lee and 
Xie, 2020; Siéfert, 2019; Siéfert et al., 2020) and flexible electronics assembly (Xu et al., 2015).

6. Conclusion

In summary, a multiscale theoretical framework named BTM is proposed to realize the inverse design of space curves with both 
curvature and torsion, beyond the previous design strategies of morphologies of morphing ribbons (arc, helix helicoid and plane 
curve). The BTM and associated theory are inspired from two microstructural deformation mechanisms in natural plants: the graded 
curvature regulated by matrix cm and the helix-like morphology regulated by FOA. To solve the cm and FOA inversely, we innovatively 
introduce a twist field to convert the forward problem of morphing ribbon into an inverse problem. At last, as a conceptual display, we 
present a phase diagram in the cm versus FOA plane to compare the complex target morphologies (e.g., hemisphere, hyperboloid, and 
tendril), characterized by various curvatures and torsions designed by the BTM theory.

In the BTM theoretical framework, a multiscale swelling constitutive is proposed in material frame to describe the swelling strains, 
and the principal curvatures of each unit are derived in material frame by minimizing the elastic energy. Then, the rotation θ along the 
normal vector N is applied to connect the material frame and the geometry frame. Furthermore, a twist field φ is introduced to achieve 
the inverse design, which builds the bridge between material properties (in material frame) and the geometry of target space curve (in 
Frenet frame). Considering the fact that the solution for inverse design is not unique, we provide an optimization strategy for the twist 
field selection. The design criteria of geometry size are also provided based on the consideration of fabrication, and some cases are 
selected to verify the theory by FEA. Therefore, the BTM theory paves the way for the inverse design and intelligent fabrication of 
morphing ribbons, and is thus promising in facilitating broader applications of morphing materials.
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